Search results for "Sections in Lie group"
showing 2 items of 2 documents
Multiplicative loops of 2-dimensional topological quasifields
2015
We determine the algebraic structure of the multiplicative loops for locally compact $2$-dimensional topological connected quasifields. In particular, our attention turns to multiplicative loops which have either a normal subloop of positive dimension or which contain a $1$-dimensional compact subgroup. In the last section we determine explicitly the quasifields which coordinatize locally compact translation planes of dimension $4$ admitting an at least $7$-dimensional Lie group as collineation group.
Multiplicative Loops of Quasifields Having Complex Numbers as Kernel
2017
We determine the multiplicative loops of locally compact connected 4-dimensional quasifields Q having the field of complex numbers as their kernel. In particular, we turn our attention to multiplicative loops which have either a normal subloop of dimension one or which contain a subgroup isomorphic to $$Spin_3({\mathbb {R}})$$ . Although the 4-dimensional semifields Q are known, their multiplicative loops have interesting Lie groups generated by left or right translations. We determine explicitly the quasifields Q which coordinatize locally compact translation planes of dimension 8 admitting an at least 16-dimensional Lie group as automorphism group.